
52 The Delphi Magazine Issue 61

Creating Browser
Help Objects
by Eyal Hirsch

In this article we’ll see how to
write a COM object called a BHO.

BHO stands for Browser Helper
Object and is a Microsoft extension
to its Internet Explorer browser.

A BHO is a simple COM object,
which implements several prede-
fined interfaces in order to work
with the browser. Once you install
your BHO, your object will receive
notification of interesting events in
the browser. These events include
indication of when the user navi-
gates to a new URL, when that navi-
gation completes, when the entire
HTML page is displayed in the
browser, and others. You can
listen to these events and act
accordingly. You can tell the
browser to move forward or back,
to refresh, or go to the home page
defined for that user.

You can use such a BHO to pre-
vent users from accessing certain
pages, and to help them reach
other pages. Another possibility
would be to collect information on
the user’s habits. Later on you’ll
see that you can even fill informa-
tion for the user in the controls
inside the HTML pages shown in
the browser.

Skeleton BHO
Now let’s see how this technology
is implemented in the greatest tool,
Delphi! First of all, since the BHO is
an Automation object, we need to
create one. Open Delphi and create
a new ActiveX library project and
save it as pSimpleBHO.dpr. Next,
add a new Automation object from
the same ActiveX wizard dialog.
Name that automation object
InfoBHO. Leave the default options
as they are and don’t add anything
to the IInfoBHO interface, via the
Type Library editor. We won’t
need any custom methods or prop-
erties for that object.

As with all COM objects, we need
to register our object in the

registry. However, since our object
is not a regular COM object, but
rather a BHO, we need to take an
additional step in order for
Internet Explorer to recognize our
object. Select Project | View
Source menu item and, at the
bottom of the unit, add the lines of
code shown in Listing 1. What this
code does is register our object as
a BHO under the correct entry in
the registry. When Internet
Explorer loads it checks under the
following entry in the registry for
registered BHOs:

HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Windows\
CurrentVersion\
Explorer\
Browser Helper Objects\
{xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxxx}

The {xxxx...xxxx} notation stands
for your automation object
CoClass GUID. If you install my

BHO you’ll see the following entry
in your registry:

HKEY_LOCAL_MACHINE\’SOFTWARE\
Microsoft\Windows\
CurrentVersion\
Explorer\
Browser Helper Objects\
{5476D9CC-444E-11D4-ACEF-
080000178968}

As far as I know there is a bug in the
Internet Explorer 5 (IE5) browser
with regard to BHOs. It seems that
IE5 is able to load only the first reg-
istered BHO in the system (the
BHOs are sorted in the registry by
their GUIDs). Therefore, if you
already have a BHO registered in
your system with a lower GUID,
your BHO won’t be called. This bug
was solved in IE5.5 and can be
solved in IE5 by specifying a
smaller GUID for your BHO; thus
promising your BHO will be the
first registered one and the one
that will be used. Of course this is
only a hack and should be avoided.

Implemented Interfaces
Currently we have an ActiveX
library and an automation object.
We’ve also registered our BHO in
the registry. However there is still
some work to be done before we
can see results.

// In the project source file, just under the {$R *.RES}
// directive add the following lines.
var
Handle: HKey;
Status, Disposition: Integer;

begin
Status := RegCreateKeyEx(HKEY_LOCAL_MACHINE, 'SOFTWARE\Microsoft\Windows\’+
‘CurrentVersion\Explorer\Browser Helper Objects\’+
‘{5476D9CC-444E-11D4-ACEF-080000178968}', 0, '', REG_OPTION_NON_VOLATILE,
KEY_READ or KEY_WRITE, nil, Handle, @Disposition);

if Status = 0 then begin
Status := RegSetValueEx(Handle, PChar(''), 0, REG_SZ,
PChar('InfoBHO'), Length('InfoBHO') + 1);

RegCloseKey(Handle);
end;

end.

type
TInfoBHO = class(TAutoObject, IInfoBHO, IObjectWithSite, IDispatch)
private
BHOManager : TfrmBHOManager;
function AdviseEvents : boolean;
function GetParameterTypeAsString(varType : TVarType) : String;

protected
WebBrowser : IWebBrowser2;

public
procedure Initialize; override;
// Explorer releated methods.
function SetSite(const pUnkSite: IUnknown):HResult; stdcall;
function GetSite(const riid: TIID; out site: IUnknown):HResult; stdcall;
function Invoke(DispID: Integer; const IID: TGUID; LocaleID: Integer;
Flags: Word; var Params; VarResult, ExcepInfo, ArgErr: Pointer): HResult;
stdcall;

end;

➤ Above: Listing 1 ➤ Below: Listing 2

September 2000 The Delphi Magazine 53

The BHO must implement
several interfaces; therefore, go to
the unit where your automation
object is declared and change the
TInfoBHO object to look like Listing
2. As you can see from this, the
BHO implements the following
interfaces: IInfoBHO, IObjectWith-
Site and IDispatch.

The IInfoBHO is the one automati-
cally generated for us. However,
we won’t need it and it will remain
empty. The second interface the
BHO supports is the IObjectWith-
Site. When IE5 loads our BHO,
which it finds in the registry, it que-
ries the object for the IObject-
WithSite interface and calls the
SetSite method of this interface.
The browser passes this method
an IUnknown interface, which is
actually an IWebBrowser2 interface
(declared in the SHDocVW unit,
which you must include in your
Uses clause). We’ll save this inter-
face and I’ll show you in a moment
what we have to do with it. The last
interface our automation object
supports is IDispatch. Actually, the
object already implements the
IDispatch interface, but we need to
override it’s Invoke method and
therefore you have to redefine it.

Listing 3 shows the three
methods relevant to the IObject-
WithSite interface. As you can see,
in the SetSite method we save the
IWebBrowser2 interface in the
WebBrowser data member of the
class. Now we call the private
AdviseEvents method, which is
used to register our BHO object as
a listener for the browser’s events.
I won’t delve here as to what
exactly the COM code does here,
but basically we find the correct
IConnectionPoint, which is DIID_D-
WebBrowserEvents2 in our case, and

then call the Advise method with
ourselves as the first parameter to
the method.

After advising, our object will
receive the notifications thrown by
the browser. Listing 4, taken from
the SHDocVw unit, shows the events
we can listen for. The events we’ll
focus on here are BeforeNavi-
gate2 and NavigateComplete2. The
BeforeNavigate2 event will be fired
prior to navigation in the browser,
the NavigateComplete2 will be fired
once the navigation has been
completed.

We override the Invoke method
in order to catch the events the
browser fires at us. The DispID
parameter passed to the Invoke
method tells us which event
occurred. Basically, you could
implement the simplest BHO to
just show message boxes when
events occur. You would use the
following code in order to achieve
this goal:

case DispID of
250: ShowMessage(
‘BeforeNavigate2’);

252: ShowMessage(
‘NavigateComplete2’);

end;

Registering The BHO
Well, your BHO should now be
ready to operate. There are two
approaches to registering a BHO
in the system. The easiest way is
to choose Run | Register ActiveX
server. The second option is to run
the regsvr32 utility with the name
of your dll. Should you encounter
any problems with your BHO, you
can simply remove it by either
choosing Run | Unregister ActiveX
server from Delphi, or use the
regsvr32 utility again, this time
with the /u switch. Please note that
I’ve checked my BHO only with IE5
on both NT4 and Windows 95. As
far as I am aware, IE4 and prior
browsers either didn’t support
BHOs or are buggy.

BHO Goes GUI
So far, our example BHO has been
quite simple, but not too useful.
However, you can very easily add
some GUI to the object and there-
fore enable your user to have full
control of the browser, and even
the HTML pages inside it.

Consider a form filler utility,
where you want to let your user

➤ Listing 4

DWebBrowserEvents2 = dispinterface
['{34A715A0-6587-11D0-924A-0020AFC7AC4D}']
procedure StatusTextChange(const Text: WideString); dispid 102;
procedure ProgressChange(Progress: Integer; ProgressMax: Integer); dispid 108;
procedure CommandStateChange(Command: Integer; Enable: WordBool); dispid 105;
procedure DownloadBegin; dispid 106;
procedure DownloadComplete; dispid 104;
procedure TitleChange(const Text: WideString); dispid 113;
procedure PropertyChange(const szProperty: WideString); dispid 112;
procedure BeforeNavigate2(const pDisp: IDispatch; var URL: OleVariant;
var Flags: OleVariant; var TargetFrameName: OleVariant; var PostData:
OleVariant; var Headers: OleVariant; var Cancel: WordBool); dispid 250;

procedure NewWindow2(var ppDisp: IDispatch; var Cancel: WordBool); dispid 251;
procedure NavigateComplete2(const pDisp: IDispatch; var URL: OleVariant);
dispid 252;

procedure DocumentComplete(const pDisp: IDispatch; var URL: OleVariant);
dispid 259;

procedure OnQuit; dispid 253;
procedure OnVisible(Visible: WordBool); dispid 254;
procedure OnToolBar(ToolBar: WordBool); dispid 255;
procedure OnMenuBar(MenuBar: WordBool); dispid 256;
procedure OnStatusBar(StatusBar: WordBool); dispid 257;
procedure OnFullScreen(FullScreen: WordBool); dispid 258;
procedure OnTheaterMode(TheaterMode: WordBool); dispid 260;

end;

// Advise events to listen for browser events.
function TInfoBHO.AdviseEvents : boolean;
var
ConnectionPoints : IConnectionPointContainer;
WebEvents : IConnectionPoint;
Hr : HResult;
dwCookie : Integer;

begin
ConnectionPoints :=
WebBrowser as IConnectionPointContainer;

Hr := ConnectionPoints.FindConnectionPoint(
DIID_DWebBrowserEvents2, WebEvents);

WebEvents.Advise(self as IDispatch, dwCookie);
Result := true;

end;

// SetSite method
function TInfoBHO.SetSite(const pUnkSite: IUnknown):HResult;
begin
if (pUnkSite <> Nil) then begin

WebBrowser := pUnkSite as IWebBrowser2;
AdviseEvents;

end;
Result := S_OK;

end;
function TInfoBHO.GetSite(const riid: TIID; out site:
IUnknown):HResult;

begin
Result := S_OK;

end;

➤ Listing 3

54 The Delphi Magazine Issue 61

specify personal information to be
added automatically for him or her
in any relevant HTML forms. With
the BHO you can identify relevant
pages (based on the URL navigated
to, or by examining the HTML page,
for example) and pop up your GUI
so that the user can click a confir-
mation button and you can auto-
matically fill in the information for
him or her in the browser. The
form filler is just one example, you
could save the entire history of the
URLs this user has visited, allow fil-
tering of which URLs can be viewed
for a specific user, collect informa-
tion about the content of the pages
the user views... the possibilities
are endless!

OK, enough said. Add a new
blank form to the project and name
it frmBHOManager. Now override the
Initialize method and create an
instance of that form and show it.
Now you have a GUI opened for you
by the browser.

Listing 5 shows the final code for
the Invoke method. As you can see
from the lisitng, every event has
different parameters passed to it in
an array of variants in the Params
parameter. The BeforeNavigate2
event, for example, has access to
the Post data in the second (index

1) item of that array, the URL to
navigate to is located in the sixth
(index 5) item. The current IWeb-
Browser2 interface, which fired the
event, is passed in the seventh
(index 6) item of that array. We
then call a custom public method
of the frmBHOManager class in order
to save the IWebBrowser2 interface
for later use. I also sent a small
message to a TMemo object in that
form, which I use for debug infor-
mation. The NavigateComplete2
event has less info than the Before-
Navigate2 event and only has the
new URL and the IWebBrowser2
interface, which fired the Navigate-
Complete2 event.

That concludes the uInfoBHO
code, which is the actual COM
object acting as a BHO. Following
is a discussion on the code used
in the uBHOManager unit.

HTML Manipulated
I’ve created two very simple HTML
pages in order to demonstrate how
the BHO can manipulate an HTML
page in the browser. The first
HTML page is a simple form for
user information. This page has
three edit boxes for the user’s first
name, last name and email
address. The fourth element is a
drop down list, used to indicate
the user’s country. The page has

a Submit button at the bottom of it,
in order to submit the user’s
details. The second HTML page is
shown when the user presses the
Submit button in the first page, and
simply shows a confirmation
message.

In order to use this demo, you’ll
have to use some sort of a web
server, such as PWS or IIS from
Microsoft. Place the two HTML
files in the root directory for your
web server and, once the BHO is
ready, navigate to the first HTML
file (called UserInfo.htm, by the
way).

The BHOManager has three edit
boxes and one combobox, corre-
sponding to the controls in the
HTML page. Once you click the
Update HTML button, the informa-
tion you’ve filled in these controls
will be copied into the appropriate
controls in the HTML page. Listing
6 shows the two methods respon-
sible for moving the information
from your GUI into the HTML page.

The first method that is called
once you click the Update HTML
button is btnSetValuesClick. In this
method, we call the Get_Document
method of the CurrentBrowser data
member, which represents the
current IWebBrowser2 object. The
Get_Document method returns an
IDispatch interface, which we

➤ Listing 5

// The Invoke method - where all the fun takes place.
function TInfoBHO.Invoke(DispID: Integer; const IID: TGUID;
LocaleID: Integer; Flags: Word; var Params; VarResult,
ExcepInfo, ArgErr: Pointer): HResult;

var
DispParams : TDispParams;
VarArg : TVariantArg;
varType : TVarType;
WebAsVariant : PVariant;
CurrentWebBrowser : IWebBrowser2;
PostData, TargetFrame, NavigateToUrl : String;

begin
try

DispParams := TDispParams(Params);
case DispID of
// [0]: Cancel flag - VT_BYREF|VT_BOOL
// [1]: HTTP headers - VT_BYREF|VT_VARIANT
// [2]: Address of HTTP POST data -
// VT_BYREF|VT_VARIANT
// [3]: Target frame name - VT_BYREF|VT_VARIANT
// [4]: Option flags - VT_BYREF|VT_VARIANT
// [5]: URL to navigate to - VT_BYREF|VT_VARIANT
// [6]: An object that evaluates to the top-level or
// frame
// WebBrowser object corresponding to the event.
DISPID_BEFORENAVIGATE2 :
begin
// Get current IWebBrowser2 interface.
VarArg := DispParams.rgvarg^[6];
CurrentWebBrowser :=
IDispatch(VarArg.dispVal) as IWebBrowser2;

varType := VarArg.vt;
GetParameterTypeAsString(varType);
// Get PostData information.
VarArg := DispParams.rgvarg^[2];
PostData := VarArg.pvarVal^;
// Get Target frame name.
VarArg := DispParams.rgvarg^[3];
TargetFrame := VarArg.pvarVal^;
// Get NavigateTo url.

VarArg := DispParams.rgvarg^[5];
NavigateToUrl := VarArg.pvarVal^;
if (Assigned(BHOManager)) then begin
BHOManager.SetWebBrowser(CurrentWebBrowser);
if (CurrentWebBrowser = WebBrowser) then
BHOManager.AddLogLine(
'BeforeNavigate2 - TopWindow')

else
BHOManager.AddLogLine(
'BeforeNavigate2 - FrameWindow');

end;
end;

// [0]: URL navigated to - VT_BYREF|VT_VARIANT
// [1]: Object that evaluates to top-level or frame
// WebBrowser object corresponding to the event.
DISPID_NAVIGATECOMPLETE2 :
begin
// Get current IWebBrowser2 interface.
VarArg := DispParams.rgvarg^[1];
CurrentWebBrowser := IDispatch(VarArg.dispVal) as
IWebBrowser2;

// Get URL navigated to.
VarArg := DispParams.rgvarg^[0];
NavigateToUrl := VarArg.pvarVal^;
if (Assigned(BHOManager)) then begin
if (CurrentWebBrowser = WebBrowser) then
BHOManager.AddLogLine(
'NavigateComplete2 - TopWindow')

else
BHOManager.AddLogLine(
'NavigateComplete2 - FrameWindow');

end;
end;

end;
finally
Result := S_OK;

end;
end;

September 2000 The Delphi Magazine 55

typecast to an IHTMLDocument2
interface. Next we use the Forms
property of the IHTMLDocument2
interface to retrieve a collection of
the HTML forms in the HTML page.
Since I’ve defined only one form in
the HTML page, we can retrieve the
first form element in that collection
and call the UpdateHTMLElements
method with this IHTMLFormElement
interface as its sole parameter.

The UpdateHTMLElements method
receives the IHTMLFormElement
interface from which it can retrieve
the different controls on the form.
We use the Item method of the
IHTMLFormElement interface in order
to retrieve the desired element.
Listing 7 shows how we retrieve
the first name element control
from the HTML page and set its
value with the value specified by
the user.

The ItemName is an OleVariant
variable and we assign the
edtFirstName value name to it, as
this is the name of the first name
control in the HTML page. Now the
Item method is used to retrieve the
desired object. The return value
for the Item method is an IDispatch
interface and therefore we need to
typecast it to an IHTMLInputElement
interface. Once we have an
IHTMLInputElement interface we can
call the Set_Value method on that

interface with the value specified
by the user.

The BHOManager also lets you go
back, forward, home and navigate
to a specific URL in the browser.
Please refer to the code on the disk
for the entire implementation of
the BHOManager.

One last thing to mention is that
to use the HTML interface, you
must add the MSHTML unit to your
uses clause. I recommend you take
the time to look inside this unit so
that you can see the other HTML
related interfaces for yourself.

Conclusion
Figure 1
shows the
BHO after I’ve
clicked the
Update HTML
button with
my informa-
tion.

Once you
build a BHO
object you are
only limited
by your imagi-
nation as to

what you can achieve with this
power. Through the BHO you can
manage and listen to everything
the user does in the browser,
hence you have valuable informa-
tion in your hands.

Eyal Hirsch works as a software
developer in Israel and, although
he has to use Visual C++ from time
to time in his work, Delphi is his
avowed first love! Email Eyal at
eyalhir@netvision.net.il

// Set the FirstName element in the HTML page.
ItemName := 'edtFirstName';
FirstNameElement := UserForm.item(ItemName, ItemIndex) as IHTMLInputElement;
FirstNameElement.Set_value(edtFirstName.Text);

// Update the information from the Delphi form into the HTML
// page in the browser.
procedure TfrmBHOManager.UpdateHTMLElements(UserForm :
IHTMLFormElement);

var
ItemIndex, ItemName : OleVariant;
FirstNameElement, LastNameElement, EMailElement :
IHTMLInputElement;

CountryElement : IHTMLSelectElement;
begin
ItemIndex := 0;
// Set the FirstName element in the HTML page.
ItemName := 'edtFirstName';
FirstNameElement := UserForm.item(ItemName, ItemIndex) as
IHTMLInputElement;

FirstNameElement.Set_value(edtFirstName.Text);
// Set the LastName element in the HTML page.
ItemName := 'edtLastName';
LastNameElement := UserForm.item(ItemName, ItemIndex) as
IHTMLInputElement;

LastNameElement.Set_value(edtLastName.Text);
// Set the EMail element in the HTML page.
ItemName := 'edtEmail';
EMailElement := UserForm.item(ItemName, ItemIndex) as
IHTMLInputElement;

EMailElement.Set_value(edtEMail.Text);
// Set the Country element in the HTML page.
ItemName := 'cbCountry';
CountryElement := UserForm.item(ItemName, ItemIndex) as
IHTMLSelectElement;

CountryElement.Set_value(cbCountry.Items[
cbCountry.ItemIndex]);

end;

// The SetValues button was clicked - set the values
// specified in the BHOManager into the appropriate fields
// in the HTML page.
procedure TfrmBHOManager.btnSetValuesClick(Sender:
TObject);

var
HtmlDocument : IHTMLDocument2;
HtmlForms, HtmlFormElements : IHTMLElementCollection;
UserForm : IHTMLFormElement;
FormName : WideString;
Name, Index : OleVariant;

begin
// Check whether CurrentBrowser data member is assigned.
if (not Assigned(CurrentBrowser)) then
exit;

// Get HTML document held by CurrentBrowser data member.
HtmlDocument :=
CurrentBrowser.Get_Document as IHTMLDocument2;

// Get collection of HTML forms in the current page.
HtmlForms := HtmlDocument.forms;
memDebug.Lines.Add('Form count is ' +
IntToStr(HtmlForms.Get_length));

Index := 0;
Name := 0;
// Retrieve Form indexed zero, which is only one for now
UserForm := HtmlForms.item(Name, Index) as
IHTMLFormElement;

// Get the name of the form.
FormName := UserForm.Get_name;
if (FormName <> '') then
memDebug.Lines.Add('Form name is ' + FormName);

UpdateHTMLElements(UserForm);
end;

➤ Listing 6

➤ Listing 7

➤ Figure 1

	Skeleton BHO
	Implemented Interfaces
	Registering The BHO
	BHO Goes GUI
	HTML Manipulated
	Conclusion

